\sum_j \delta_j^{l+1(t)} \frac{\partial \sum_m w_{mj}^{l+1(t)} a(z_m^{l(t)}) + b_j^{l+1(t)}}{\partial z_i^{l(t)}} + \sum_k \delta_k^{l(t+1)} \frac{\partial \sum_n w_{nk}^{l(t+1)} a(z_k^{l(t)}) + b_k^{l(t+1)}}{\partial z_i^{l(t)}}.\]
Because \(a(z_m^{l(t)})\) only depends on \(z_i^{l(t)}\) if \(m = i\) (an assumption we made about the activation function in the previous post) and similarly, \(a(z_k^{l(t)})\) only depends on \(z_i^{l(t)}\) if \(n = i\), all but 2 of the partial derivatives become \(0\) when we differentiate. We obtain: \[\delta_i^{l(t)} = \delta_j^{l+1(t)} w_{ij}^{l+1(t)} a’(z_i^{l(t)}) + \sum_k \delta_k^{l(t+1)} w_{ik}^{l(t+1)} a’(z_i^{l(t)}) = \
a’(z_i^{l(t)}) \left[ \sum_j w_{ij}^{l+1(t)} \delta_j^{l+1(t)} + \sum_k w_{ik}^{l(t+1)} \delta_k^{l(t+1)} \right]. \quad \blacksquare \]